3. AXIOMS OF SET
THEORY

§3.1. Axioms

The modern approach to mathematics is to set up a
system of axioms for a particular branch of mathematics
and then to prove theorems only using these axioms as a
foundation. This takes out the need for intuition. The
concepts involved in that subject are left undefined.

In many ways a set of axioms is like a mathematical
creed. You can’t prove anything from nothing — in
mathematics just as in religion. You have to begin with
statements that might seem reasonable, such as “There is
a God who communicates with humans™ or “given a line,
and a point not on that line, there exists a unique line
through that point parallel to the given line”. Religious
people are often ridiculed for believing things they can’t
prove. But mathematicians must do the same.

The Euclidean axioms were considered to be
intuitively obvious, and therefore true, but in the
nineteenth century certain mathematicians decided to
vary one of these axioms and so created non-Euclidean
geometries. Then, in the twentieth century, cosmologists
decided that, although Euclidean geometry was
sufficiently accurate on a small scale, a non-Euclidean
geometry was needed to describe the vast distances of the
universe.

35



It can be shown that the Euclidean axioms describe
just one geometry. However most sets of axioms can
describe many different objects. The axioms for a vector
space over a field, for example, describe many different
vector spaces. However, for finite-dimensional vector
spaces there is essentially only one vector space of each
dimension. In the case of groups there’s a much greater
variety of examples. We can no longer think of the axioms
as self-evident. In effect the set of axioms are just part of
the definition of a vector space, or a group.

Now I’m going to attempt to devise a set of axioms
for the whole of mathematics. On the basis of these
axioms one can potentially prove everything that is
known about mathematics! Well, this book is not big
enough to encompass all mathematical knowledge.
Rather it will go far enough for it to be obvious that this
mammoth task is possible.

Actually, we’ll be considering axioms for set
theory. The only objects in our theory will be sets. You
can think of a set as a collection of ‘things’ and there don’t
need to be any common properties that these ‘things’ have
in common, like a dinner set. As Lewis Carroll said, they
can be as disparate as “shoes and ships and sealing wax —
of cabbages and kings”. Lewis Carroll was a
mathematician and he was making an explicit reference
here to set theory.

Now mathematics is bubbling with all sorts of
‘things’ — numbers and functions and matrices and curves
to name just a few. These don’t appear to be sets but we’re
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going to define them as sets. However, before we begin
that journey and consider the axioms for set theory, let’s
think further about axioms.

§3.2. Models

A model for a set of axioms is simply an object that
satisfies those axioms. So a model for group theory will
be any one of the many examples of a group. In the case
of the Euclidean axioms it can be shown that there’s
essentially only one model, but for most axiomatic
systems there are many. However a set of axioms may
have no models at all! We say that such a set of axioms is
inconsistent.

We could take an inconsistent set of axioms and
prove lots of theorems, but that would be a waste of time
if there was nothing that satisfied those axioms.

Proving that a set of axioms is consistent can be
very easy. We simply come up with a model. For
example, the group axioms are consistent because the set

{1} is a group.

But how can we prove that a set of axioms is
inconsistent? We wuse those axioms to obtain a
contradiction. I’ll illustrate these concepts by a couple of
baby examples of sets of axioms. They’re of no
mathematical significance whatsoever — they’re just for
training purposes.

I’ll provide two, alternative, sets of axioms for a
thing called a ‘slice’. Now you know what a slice is in
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ordinary life, but you have no idea what a slice is in
mathematics. That’s because I just made it up as an
undefined object for the purpose of this demonstration. So
rid your mind of properties of physical slices, such as
thinness and flatness. A slice here is an undefined object
that has an undefined operation called ‘division’. Again
this has not very much to do with division as you know it
in mathematics, although you may notice some
similarities. A slice is a set where a/b is defined for all a,
b in the set. The only thing we’re allowed to know about
this binary operation are the axioms. So, empty your mind
of anything that the words ‘slice’ and ‘division’ suggest
and treat them as being undefined.

Aslice is a set S, together with an operation a/b such that:
(1) a/b e Sforalla, b € S;
(2) there exists 0 € S such that 0/x = 0 for all x € S;
(3) there exists 1 € Ssuch that 1 =0 and

x/1=xforall x € S;
(4)Ifa/lb=cthena/c=bforalla,b,c eS.

Theorem 1: There are no slices. That is, these axioms are
inconsistent.

Proof: 0/1 = 0 by Axioms (3) and (2).

Hence 0/0 = 1 by Axiom (3).

But 0/0 = 0 by Axiom (2).

Let’s modify the definition of a slice as follows.
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A strawberry slice is a set S, together with an
operation a/b such that:
(1) a/b e Sforalla, b € S;
(2) there exists 0 € Ssuch that 0/x =0 forall x € S;
(3) there exists 1 €S such that 0 = 1 and
x/1=xforallx € S;
(4) a/(b/c) = c/(b/a) for all a, b, c € S.

Example 1: An example of a
slice is S = {0, 1} with:

0/0 =0;
0/1=0;
1/0 = 0;
1/1=1. P
Note that in S, a/(b/c) = 0 in all cases except where:

a=b=c=1.
In that case c/(b/a) = 1.

So S is a model for strawberry slices and so the
axioms for a strawberry slice are consistent. Let’s prove a
few theorems about strawberry slices.

Theorem 2: In a strawberry slice, S:
(a/b)/c = (a/c)/b forall a, b, c € S.
Proof: (a/b)/c = (a/b)/(c/1) by (2)
= 1/(c/(a/b) by (4)
= 1/(b/(a/c)) by (4)
= (a/c)/(b/1) by (4)
= (a/c)/b by (2).
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Define «o = 0/1.

Theorem 3: In a strawberry slice, x/oo = 0 for all x.
Proof: x/co = x/(1/0) by definition of «

= 0/(1/x) by (4)

=0hy (2)

Theorem 4: In a strawberry slice x/0 = oo for all x.
Proof: x/0 = x/(0/1) by (3)

= 1/(0/x) by (4)

=1/0 by (2) = .

We seem to be developing quite a theory here. But
things are about to collapse a little bit.

Theorem 5: 0 = oo,
Proof: «o = 1/0 by definition

= 1/(oo/0) by Theorem 3

= oo/ (/1) by (4)

= oofoo by (3)

=0 by Theorem 3.
That’s enough for these silly slices. Let’s move on to the
serious business of sets. Now, when set theory was first
considered there was no conscious use of axioms. In fact
there was only one axiom and it seemed to be so obvious
that it didn’t seem necessary to state it.
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83.3. Naive Set Theory

We tend to think of a set a concrete embodiment of
some property. Being blue is a property of some physical
objects, so we can talk about the set of all blue things. It’s
tempting to assume that for every property P there’s a set
{x | Px} whose elements are precisely those elements for
which the property holds. But this leads to the Russell
Paradox.

A contradiction is something that cannot be
allowed in mathematics. In ordinary life we somehow live
with certain contradictions but in mathematics, if just a
single contradiction is allowed, one can prove everything.

Bertrand Russell was once challenged about this
claim. “Assuming that 1 + 1 = 1 prove that you’re the
Pope,” he was asked. Russell gave an argument along the
following lines:

Suppose that 1 +1 =1.

Now by definition, 1+ 1 = 2.
Therefore 1 = 2.

The Pope and | are two people.
Therefore the Pope and | are
one person.

Therefore | am the Pope!

In the nineteenth and early twentieth centuries
mathematicians were concerned with the foundations of
the subject, and philosophers were concerned with the
nature of truth. They developed mathematics on the basis
of set theory. There was basically only one axiom about
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sets that needed to be used to create this mighty edifice,
though it was never stated explicitly.

Axiom of Extensionality: For every property P there is a
set that consists of all sets that have that property. In
symbols: {x | Px} is always a set.

The empty set is a set because it’s {X | X # X}.
{a, b} is a set because it’s {x | X =aor x = b}.

For any set we can define x* = {x, {x}} and hence we can
define the natural numbers by defining 0 as the empty set
and by considering n* as n + 1 (though addition and
multiplication would yet have to be defined).

In the early 1900s, the great philosopher Frege was
preparing the second volume of his book on the
foundations of mathematics, building everything on the
basis of the axiom of extensionality. But just before it was
published Bertrand Russell wrote to him pointing out
what we now know as Russell’s Paradox.

The contradiction that arises from this paradox
shows that the foundation that underpinned Frege’s book
was invalid. The book had to be withdrawn from
publication. Mathematics was in danger of collapsing! A
few mathematicians, those interested in the foundations
of mathematics, tried to prop it up. Most mathematicians
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simply ignored the problem and just got on with their own
business.

83.4. Sets and Classes

The rescue came with replacing the one axiom by
a set of axioms that avoids the Russell Paradox. We use a
class system with ordinary classes called sets and elite
classes called proper classes. So a class is a more general
object in that all sets are classes but a class need not be a
set.

proper classes

classes

We define a set-model to be a collection
of objects, called sets, together with a
binary relation e such that:

Axiom of Equality:
VsVi[s=t<> VX[x e s> x e t]]
So two sets are equal if and only if they have precisely the
same elements.

If X € S we say that “x is an element of S, or “x is
a member of S”, or “S contains x”. But empty your mind
of any intuitive notion you may have of membership.
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Everything in set theory is a set. Indeed everything in
mathematics can be considered to be a set!

Example 2: Let’s take the system N of natural numbers
and define membership by: x e y <> X2 <Yy.

Then 2 is an ‘element’ of 9 because 22 < 9. Using the { }
notation for listing elements we have 9 = {0, 1, 2} because
these are the only natural numbers whose square is less
than 9.

But 8 = {0, 1, 2} as well. Since 8 = 9 this violates the
axiom of equality. This means that this example is not a
set-model.

Example 3: Let’s take the collection of natural numbers
but this time we’ll define e slightly differently, by:
X €Y<>X<VY2

In this model 0 = { } and has no elements since there is
no positive integer less than 02,

1 = {0} since 0 < 12 but no other numbers.
2=4{0,1,2,3}since0<2%2and 1< 22 2<2%and 3 < 22
but no other numbers.

3={0,1,2,3,4,5,6,7, 8}.

This system does satisfy the axiom of equality and so is a
set-model. However {0, 1, 2} is a class, but it is not a set
because there is no number n such that x € n if and only
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if x =0, 1 or 2. Hence {0, 1, 2} is a proper class in this
model.

83.5. Constructions of Classes

| need to say something about the type of predicates
that we allow. If we were talking about jelly beans {x | x
is red} 1s the set of all red jelly beans. But sets can’t be
red. In fact the only thing they can do is to belong. Proper
classes can’t even do that. The only predicates that we
allow are those that can be built up from the primitive
relationship of belonging using the standard logic
operations. So € is a valid predicate and hence so is ¢.
Equality can be expressed in terms of membership since
X =yisequivalentto Vz[z e x <>z € y].

I’1l now define some classes that can be constructed
from existing classes. The question as to which of them
are sets will have to walit.

The empty class is & = {x | x # x}.
By the Axiom of Equality, all empty classes are equal, so
in any model there is at most one empty set.

The difference S—T={x|(x e S) A (x ¢ T}.

The unordered pair {S, T} ={x| (x=S) v (x=T)}.

More generally {x1, X2, ... , Xn} denotes:
Klx=x1)vX=X)Vv...v(X=xn)}
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The unionofasetSisuS={x|3y[x ey Ay € S}.

The intersection of a non-empty set S is
NS ={x|Vyly e S—>x eVy]}.

You will be familiar with the union and intersection
of two sets, but US and NS may be something new. But
these definitions are just extensions of what you know
already. These allow us to talk about the intersection and
union of any set of sets.

The intersection of two sets S and T is defined to be
SNT=n{S, T}
We say that S, T are disjointif SN T = .

The union of two sets S and T is defined to be
SuUT=U{S, T}
If S, T are disjoint we oftenwrite SU Tas S+ T.

Now mathematics contains many more concepts
than sets and elements of sets. We have ordered pairs, and
integers, and real and complex numbers. There are
functions, and matrices and geometric objects such as
triangles and circles. Our goal will be to define all of these
purely in terms of the relation <. In this way we can build
up all of mathematics within a certain model. Let’s begin
with ordered pairs.
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How do you define the ordered pair (X, y)? You
might say that it consists of two things in a certain order
— except that (x, X) is an ordered pair so there might only
be one thing. You know intuitively what (x, y) means but
giving a precise definition would appear to be tricky.
Here’s how we do it.

The ordered pair (X, y) is defined to be {{x}, {x, y}}.
This may seem a strange way of defining an ordered pair
but it has the one important property that we expect from
an ordered pair, namely that (a, b) = (c, d) ifand only if a
=candb=d.

Theorem 6: If u=(a, b) and v = (c, d) then u = v implies
that:

a=candb=d.
Proof: nu={a} ~{a, b} ={a} and so unu =a.
Similarly nv =c. Since u =v, we have a =b.
Also uu ={a, b} and so uu — nu = {c}.
Hence u(uu —Nu) = b.
Similarly u(wv — nv) = d. Since u = v, we have b = d.
%O

The cartesian product S x T is defined to be:
{xy)xeS)AyeT}

Sisasubclassof Tif Vx[x e S—>x € T].
We denote this by writing S T.
SoS=Tifandonlyif ScTand T cS.
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Sisapropersubclassof TifScTandS=#T.
We write thisasSc T.

The power class (@ (S) is defined to be {x | x < S}.

S'= {x|(x € S) v (x=9S)} called the successor of S.
In other words S* =S U {S}.

A set x is called a successor class if it contains the
successor of each of its elements.

The successor closure of S is the intersection of all the
successor sets that contain S (as an element). We denote
ithy S*.So S*=n{x| (S e x) A Vy(y e x> y' € X)}.

Example 3 (continued):

To assist you in understanding all of the above
constructions let’s see what they are in the model of
Example 3. Here the set is N and x € y means that x < y2,

@& = 0 because there are no natural numbers less than 02.

3 — 2 is the class {4, 5, 6, 7. 8}. Since this is not one of
the sets in this model and so it is a proper class.

{2, 3} is not a set in this model and so it is a proper class.
There are no unordered pairs in the model of Example 2.

u3=8sincewu3=0ulu2...uU8=8.

N3 =0sincen3=0n1n...n8=0since 0 is empty.
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2u3=3and2n3=2.
2c3since2=1{0,1,2,3} and3=1{0, 1, 2, ..., 8}.

2 = is a proper class
3 =2 since the only subsets of 3 are 0, 1, 2, 3 and these
make up the set 2.

0"={0}=1,;

1"=1u {1} ={0} u {1} = {0, 1} which is a proper class;
2"=2u{2}={0,1,2,3yu{2}={0,1,2,3}=2.

In fact n* = n forall n> 2.

One novel feature of this model is that the integers
from 2 onwards are elements of themselves. The
phenomenon of x € x is an interesting one. When we
come to setting up the axioms for set theory we’ll have to
decide whether to allow this possibility or whether to rule
it out. Before you reach that point in the notes you might
like to contemplate whether you would like to allow this
self-referential behaviour of sets.

83.6. ZF-Models
A ZF-model is a model that satisfies the following
axioms:
(1) Empty Set: O is a set.
(2) Pairs: If S, T are sets so is {S, T}.
(3) Powers: If Sisasetsois@S.
(4) Union: If Sisasetsois US.
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(5) Infinity: @ = &* is a set.

(6) Specification: If Sis a set and P is any predicate built
up from e then {x € S| Px} is a set.

(7) Substitution: If S is a set
and F is any function then
F[S] = {F(x) | x € S} is a set.
We’ll  be defining
functions later as sets of
ordered pairs. For the purpose
of Axiom (7) a function is a
binary predicate Pxy, built up
from e, such that:
VXVYVZ[PXy A Pxz >y = z].
Notice that without the
Axiom of the Empty Set we’d
have no sets at all, because all
the other axioms say, “IF S is
a set ....”. But this axiom on

its own only produces one set, &.
By the Axiom of Pairing, if S is any set then so is
{S, S} = {S}. So with just the first two axioms we can

produce &, {J}, {{J}}, ...
{9}, {{}}}}-

and pairs of these, such as

We can produce infinitely many others, such as
{{}, {2, {Z}}}. But all these have 0, 1 or 2 elements.

If we take just the first three axioms we can
produce larger sets. For example:

0 () = {ZJ} with 1 element,
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©AD) = {<, {T}} with 2 elements,
030 ={J, {2}, {{T}}, {D, {T}} with 4 elements.
But all such sets will have size 2" for some n.

With the first four axioms we can get sets of any
finite size. For example:

{2, {0} v {9, {{<}} ={D. {T}, {{ T}}}.

But all such sets will be finite.

We need the Axiom of Infinity to get an infinite set
and with the Axiom of Specification we can be sure that
subclasses of sets are indeed subsets. The Axiom of
Substitution is rather more technical than the others, but
in essence it says that any class that is in 1-1
correspondence with a set is a set.

But reflect again on the fact that in order for the
Axiom of Specification to work we need to have sets in
which to operate. And without the Axiom of the Empty
Set our model would be empty. The Big Bang that creates
the infinite universe of sets from a void is the axiom that
assumes the existence of the empty set.

There’s something rather appropriate about
mathematics being created out of the empty set. If you
have a religious bent you can liken it to God creating the
world out of nothing. If you have a scientific bent you can
liken the process to the Big Bang, which sort of says the
same thing, without the religious overtones.
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We assume the existence of a ZF-model. This will
be our universe of sets within which all of mathematics
can be developed. Whether such a model exists is another
matter. Of course, things exist in mathematics if we
choose to say they exist — provided they don’t lead to a
contradiction.

We could say “let there be a new number, ®, equal
to 0/0”. There’s nothing wrong with that | suppose, but
don’t expect the laws of algebra to continue to work like
they did when we invented the imaginary number, i.

For if ® :8then O+1 :g +% :%:% = 0,
Similarly ® +2 =0 + 1, so 1 =2 and you’re the Pope!

So the existence of a ZF model hinges purely on
whether the ZF axioms are consistent. But they have
never been proved to be consistent, and probably never
will be, because to prove consistency we’d have to create
a model that satisfies them, and we can only do this by
starting with some sort of model as complex as the ZF

model itself. All we can do is to prove theorems based on
these axioms and hope for the best!

The ZF axioms are really a creed. Virtually all
mathematicians consciously, or unconsciously, believe in
this creed, or something equivalent to it. There are a few
agnostics who deny the axiom of infinity on the grounds
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that we live in a finite universe. But they’re the losers.
Their mathematics is severely impoverished.

Just like a religious creed we can’t prove that the
ZF axioms are true. What would we start with in order to
do this?

So here’s the point where you can give up
mathematics altogether and go and do gardening or
something else. If you want to be a serious mathematician
and want to base your mathematics on a firm foundation,
I’m sorry, the ZF axioms, or their equivalent, are the best
we’ve got.

But, if one day someone comes up with a new
paradox that shows the ZF axioms to be inconsistent, a
few mathematicians will undertake the job of modifying
the fundamental axioms, while the vast majority will
continue as if nothing has happened!

Mathematicians have a faith in their mathematical
intuition as strong as any religious person does with their
religious conviction. Please never say that you must only
believe what you can prove!

In the mean time 1’11 now show that certain familiar
mathematical objects that we are familiar with can be
considered as sets.

Theorem 7: Forall setsSand T, S — T is a set.

Proof: S—T={x e S|x ¢ T} is a set by the Axiom of
Specification. % ©
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Theorem 8: nSisasetif S 0.

Proof: Let T € S.

Then "S={x e T | Vy[y € S - x € y]} by the Axiom of
Specification. % ©

Theorem 9: Forall sets Sand T, S U T is a set.
Proof: By the Axiom of Pairs, {S, T} is a set.
By the Axiom of Unions, U{S, T} =S U Tisaset. %©

Theorem 10: Forall sets S, T, (S, T) is a set.
Proof: By the Axiom of Pairs {S, T} is a set. By the
Axiom of Powers @{S, T} is a set.
Now (S, T) = {{S}, {S, T}}

={xe o6 T} x={S} vx={S, T}} by
the Axiom of Specification. %©

Theorem 11: For all sets Sand T, S x T is a set.
Proof: If x e Sandy € T then (x, y) < ¢ {X, y} and so
x,y) € p*{x Yy}
Now each of x and vy is an element of S U T, which is a
set by theorem 10.
So{x,y}=SuTandso (x,y) € %S uT),whichisa
set by the Axiom of Powers.
Hence S x T < %S u T) and so is a set by the Axiom
of Specification. %©

We can write out explicitly the property that
extracts S x T from all the other elements of ©3(S U T)
as follows.

54



SxT=
{ze p)(SUT)|unzeSandu(uz—-nNz) e T}

To express the condition in terms of primitive
membership statements is straightforward, but very
messy. For astart, ify = {x € z| Px} is a set we can express

y € Shy ds[s € S A VX[Xx € s <> Px]].
Now X € Mz can be written as Vy[y e z—> x € y] and
X € Uz can be writtenas 3y[x e y A Y € Z].

So uNz € S can be expressed as:

3s[s € S A VX[xes <> Ja[xea A aez]]],
that is:
3s[seS A VX[xes <> Ja[xea A Vb[bez — aeb]]]].

And u(uz — nz) € T can be expressed as:
At[teT A VX[xet <> Ja[xea na € Uz —Nz]]].
that is:
t[teT A VX[xet <> Ja[xea A db[acb A be z] A
—Vb[bez — aeb]]]]

I think you get the idea. Now we don’t want to have
to crawl at this basic level all the way through our
development of mathematics. The point is that we could
do so, if we really had to.

We can’t get very far with mathematics without
functions and relations. One of the very first things we
learnt in arithmetic was 2 + 2 = 4. Before we can justify
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this rigorously we need not only to define the numbers 2
and 4, but also addition, which is a function of two
variables.
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