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3. AXIOMS OF SET 

THEORY 
 

§3.1. Axioms 
 The modern approach to mathematics is to set up a 

system of axioms for a particular branch of mathematics 

and then to prove theorems only using these axioms as a 

foundation. This takes out the need for intuition. The 

concepts involved in that subject are left undefined. 

 

 In many ways a set of axioms is like a mathematical 

creed. You can’t prove anything from nothing – in 

mathematics just as in religion. You have to begin with 

statements that might seem reasonable, such as “There is 

a God who communicates with humans” or “given a line, 

and a point not on that line, there exists a unique line 

through that point parallel to the given line”. Religious 

people are often ridiculed for believing things they can’t 

prove. But mathematicians must do the same. 

 The Euclidean axioms were considered to be 

intuitively obvious, and therefore true, but in the 

nineteenth century certain mathematicians decided to 

vary one of these axioms and so created non-Euclidean 

geometries. Then, in the twentieth century, cosmologists 

decided that, although Euclidean geometry was 

sufficiently accurate on a small scale, a non-Euclidean 

geometry was needed to describe the vast distances of the 

universe. 
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 It can be shown that the Euclidean axioms describe 

just one geometry. However most sets of axioms can 

describe many different objects. The axioms for a vector 

space over a field, for example, describe many different 

vector spaces. However, for finite-dimensional vector 

spaces there is essentially only one vector space of each 

dimension. In the case of groups there’s a much greater 

variety of examples. We can no longer think of the axioms 

as self-evident. In effect the set of axioms are just part of 

the definition of a vector space, or a group. 

 Now I’m going to attempt to devise a set of axioms 

for the whole of mathematics. On the basis of these 

axioms one can potentially prove everything that is 

known about mathematics! Well, this book is not big 

enough to encompass all mathematical knowledge. 

Rather it will go far enough for it to be obvious that this 

mammoth task is possible. 

 Actually, we’ll be considering axioms for set 

theory. The only objects in our theory will be sets. You 

can think of a set as a collection of ‘things’ and there don’t 

need to be any common properties that these ‘things’ have 

in common, like a dinner set. As Lewis Carroll said, they 

can be as disparate as “shoes and ships and sealing wax – 

of cabbages and kings”. Lewis Carroll was a 

mathematician and he was making an explicit reference 

here to set theory. 

 Now mathematics is bubbling with all sorts of 

‘things’ – numbers and functions and matrices and curves 

to name just a few. These don’t appear to be sets but we’re 
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going to define them as sets. However, before we begin 

that journey and consider the axioms for set theory, let’s 

think further about axioms. 

 

§3.2. Models 
 A model for a set of axioms is simply an object that 

satisfies those axioms. So a model for group theory will 

be any one of the many examples of a group. In the case 

of the Euclidean axioms it can be shown that there’s 

essentially only one model, but for most axiomatic 

systems there are many. However a set of axioms may 

have no models at all! We say that such a set of axioms is 

inconsistent. 

 We could take an inconsistent set of axioms and 

prove lots of theorems, but that would be a waste of time 

if there was nothing that satisfied those axioms. 

Proving that a set of axioms is consistent can be 

very easy. We simply come up with a model. For 

example, the group axioms are consistent because the set 

{1} is a group. 

 

But how can we prove that a set of axioms is 

inconsistent? We use those axioms to obtain a 

contradiction. I’ll illustrate these concepts by a couple of 

baby examples of sets of axioms. They’re of no 

mathematical significance whatsoever – they’re just for 

training purposes. 

I’ll provide two, alternative, sets of axioms for a 

thing called a ‘slice’. Now you know what a slice is in 
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ordinary life, but you have no idea what a slice is in 

mathematics. That’s because I just made it up as an 

undefined object for the purpose of this demonstration. So 

rid your mind of properties of physical slices, such as 

thinness and flatness. A slice here is an undefined object 

that has an undefined operation called ‘division’. Again 

this has not very much to do with division as you know it 

in mathematics, although you may notice some 

similarities. A slice is a set where a/b is defined for all a, 

b in the set. The only thing we’re allowed to know about 

this binary operation are the axioms. So, empty your mind 

of anything that the words ‘slice’ and ‘division’ suggest 

and treat them as being undefined. 

 

A slice is a set S, together with an operation a/b such that: 

(1) a/b  S for all a, b  S; 

(2) there exists 0  S such that 0/x = 0 for all x  S; 

(3) there exists 1  S such that 1  0 and 

                                                  x/1 = x for all x  S; 

(4) If a/b = c then a/c = b for all a, b, c  S. 

 

Theorem 1: There are no slices. That is, these axioms are 

inconsistent. 

Proof: 0/1 = 0 by Axioms (3) and (2). 

Hence 0/0 = 1 by Axiom (3). 

But 0/0 = 0 by Axiom (2). 

 

Let’s modify the definition of a slice as follows. 
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A strawberry slice is a set S, together with an 

operation a/b such that: 

(1) a/b  S for all a, b  S; 

(2) there exists 0  S such that 0/x = 0 for all x  S; 

(3) there exists 1 S such that 0  1 and                                                  

x/1 = x for all x  S; 

(4) a/(b/c) = c/(b/a) for all a, b, c  S. 

 

Example 1: An example of a 

slice is S = {0, 1} with: 

0/0 = 0; 

0/1 = 0; 

1/0 = 0; 

1/1 = 1. 

Note that in S, a/(b/c) = 0 in all cases except where: 

a = b = c = 1. 

In that case c/(b/a) = 1. 

 

 So S is a model for strawberry slices and so the 

axioms for a strawberry slice are consistent. Let’s prove a 

few theorems about strawberry slices. 

  

Theorem 2: In a strawberry slice, S: 

(a/b)/c = (a/c)/b for all a, b, c  S. 

Proof: (a/b)/c = (a/b)/(c/1) by (2) 

                       = 1/(c/(a/b) by (4) 

                       = 1/(b/(a/c)) by (4) 

                       = (a/c)/(b/1) by (4) 

                       = (a/c)/b by (2). 
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Define  = 0/1. 

 

Theorem 3: In a strawberry slice, x/ = 0 for all x. 

Proof: x/ = x/(1/0) by definition of  

                   = 0/(1/x) by (4) 

                   = 0 by (2) 

 

Theorem 4: In a strawberry slice x/0 =  for all x. 

Proof: x/0 = x/(0/1) by (3) 

                  = 1/(0/x) by (4) 

                  = 1/0 by (2) = . 

 

 We seem to be developing quite a theory here. But 

things are about to collapse a little bit. 

 

Theorem 5: 0 = . 

Proof:  = 1/0 by definition 

                = 1/(/) by Theorem 3 

                = /(/1) by (4) 

                = / by (3) 

                = 0 by Theorem 3. 

That’s enough for these silly slices. Let’s move on to the 

serious business of sets. Now, when set theory was first 

considered there was no conscious use of axioms. In fact 

there was only one axiom and it seemed to be so obvious 

that it didn’t seem necessary to state it. 
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§3.3. Naïve Set Theory 
We tend to think of a set a concrete embodiment of 

some property. Being blue is a property of some physical 

objects, so we can talk about the set of all blue things. It’s 

tempting to assume that for every property P there’s a set 

{x | Px} whose elements are precisely those elements for 

which the property holds. But this leads to the Russell 

Paradox. 

A contradiction is something that cannot be 

allowed in mathematics. In ordinary life we somehow live 

with certain contradictions but in mathematics, if just a 

single contradiction is allowed, one can prove everything. 

 Bertrand Russell was once challenged about this 

claim. “Assuming that 1 + 1 = 1 prove that you’re the 

Pope,” he was asked. Russell gave an argument along the 

following lines: 

Suppose that 1 + 1 = 1. 
Now by definition, 1 + 1 = 2. 
Therefore 1 = 2. 
The Pope and I are two people. 
Therefore the Pope and I are 
one person. 
Therefore I am the Pope! 
 In the nineteenth and early twentieth centuries 

mathematicians were concerned with the foundations of 

the subject, and philosophers were concerned with the 

nature of truth. They developed mathematics on the basis 

of set theory. There was basically only one axiom about 
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sets that needed to be used to create this mighty edifice, 

though it was never stated explicitly. 

 

Axiom of Extensionality: For every property P there is a 

set that consists of all sets that have that property. In 

symbols: {x | Px} is always a set. 

 

The empty set is a set because it’s {x | x  x}. 

 

{a, b} is a set because it’s {x | x = a or x = b}. 

 

For any set we can define x+ = {x, {x}} and hence we can 

define the natural numbers by defining 0 as the empty set 

and by considering n+ as n + 1 (though addition and 

multiplication would yet have to be defined). 

 

 In the early 1900s, the great philosopher Frege was 

preparing the second volume of his book on the 

foundations of mathematics, building everything on the 

basis of the axiom of extensionality. But just before it was 

published Bertrand Russell wrote to him pointing out 

what we now know as Russell’s Paradox. 

 The contradiction that arises from this paradox 

shows that the foundation that underpinned Frege’s book 

was invalid. The book had to be withdrawn from 

publication. Mathematics was in danger of collapsing! A 

few mathematicians, those interested in the foundations 

of mathematics, tried to prop it up. Most mathematicians 
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simply ignored the problem and just got on with their own 

business. 

 

§3.4. Sets and Classes 
The rescue came with replacing the one axiom by 

a set of axioms that avoids the Russell Paradox. We use a 

class system with ordinary classes called sets and elite 

classes called proper classes. So a class is a more general 

object in that all sets are classes but a class need not be a 

set. 

 

                                  proper classes 
 

                                sets 

 

 

                              classes 

 

We define a set-model to be a collection 

of objects, called sets, together with a 

binary relation  such that: 

 

Axiom of Equality: 

st[s = t  x[x  s  x  t]] 

So two sets are equal if and only if they have precisely the 

same elements. 

If x  S we say that “x is an element of S”, or “x is 

a member of S”, or “S contains x”. But empty your mind 

of any intuitive notion you may have of membership. 
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Everything in set theory is a set. Indeed everything in 

mathematics can be considered to be a set! 

 

Example 2: Let’s take the system ℕ of natural numbers 

and define membership by: x  y  x2 < y. 

 

Then 2 is an ‘element’ of 9 because 22 < 9. Using the { } 

notation for listing elements we have 9 = {0, 1, 2} because 

these are the only natural numbers whose square is less 

than 9. 

 

But 8 = {0, 1, 2} as well. Since 8  9 this violates the 

axiom of equality. This means that this example is not a 

set-model. 

 

Example 3: Let’s take the collection of natural numbers 

but this time we’ll define  slightly differently, by: 

x  y  x < y2. 

 

In this model 0 = { } and has no elements since there is 

no positive integer less than 02. 

1 = {0} since 0 < 12 but no other numbers. 

2 = {0, 1, 2, 3} since 0 < 22 and 1 < 22, 2 < 22 and 3 < 22 

but no other numbers. 

3 = {0, 1, 2, 3, 4, 5, 6, 7, 8}. 

 

This system does satisfy the axiom of equality and so is a 

set-model. However {0, 1, 2} is a class, but it is not a set 

because there is no number n such that x  n if and only 
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if x = 0, 1 or 2. Hence {0, 1, 2} is a proper class in this 

model. 

 

§3.5. Constructions of Classes 
 I need to say something about the type of predicates 

that we allow. If we were talking about jelly beans {x | x 

is red} is the set of all red jelly beans. But sets can’t be 

red. In fact the only thing they can do is to belong. Proper 

classes can’t even do that. The only predicates that we 

allow are those that can be built up from the primitive 

relationship of belonging using the standard logic 

operations. So  is a valid predicate and hence so is . 

Equality can be expressed in terms of membership since 

x = y is equivalent to z[z  x  z  y]. 

 

 I’ll now define some classes that can be constructed 

from existing classes. The question as to which of them 

are sets will have to wait. 

  

The empty class is  = {x | x  x}. 

By the Axiom of Equality, all empty classes are equal, so 

in any model there is at most one empty set. 

 

The difference S − T = {x | (x  S)  (x  T}. 

The unordered pair {S, T} = {x | (x = S)  (x = T)}. 

More generally {x1, x2, … , xn} denotes: 

{x | (x = x1)  (x = x2)  …  (x = xn)}. 
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The union of a set S is S = {x | y[x  y  y  S}. 

 

The intersection of a non-empty set S is 

S = {x | y[y  S → x  y]}. 

 

 You will be familiar with the union and intersection 

of two sets, but S and S may be something new. But 

these definitions are just extensions of what you know 

already. These allow us to talk about the intersection and 

union of any set of sets. 

 

The intersection of two sets S and T is defined to be 

S  T = {S, T}. 

We say that S, T are disjoint if S  T = . 

 

The union of two sets S and T is defined to be 

S  T = {S, T}. 

If S, T are disjoint we often write S  T as S + T. 

 

 Now mathematics contains many more concepts 

than sets and elements of sets. We have ordered pairs, and 

integers, and real and complex numbers. There are 

functions, and matrices and geometric objects such as 

triangles and circles. Our goal will be to define all of these 

purely in terms of the relation . In this way we can build 

up all of mathematics within a certain model. Let’s begin 

with ordered pairs. 
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 How do you define the ordered pair (x, y)? You 

might say that it consists of two things in a certain order 

– except that (x, x) is an ordered pair so there might only 

be one thing. You know intuitively what (x, y) means but 

giving a precise definition would appear to be tricky. 

Here’s how we do it. 

 

The ordered pair (x, y) is defined to be {{x}, {x, y}}. 

This may seem a strange way of defining an ordered pair 

but it has the one important property that we expect from 

an ordered pair, namely that (a, b) = (c, d) if and only if a 

= c and b = d. 

 

Theorem 6: If u = (a, b) and v = (c, d) then u = v implies 

that: 

a = c and b = d. 

Proof:  u = {a}  {a, b} = {a} and so u = a. 

Similarly v = c.  Since u = v, we have a = b. 

Also u = {a, b} and so u − u = {c}. 

Hence (u − u) = b. 

Similarly (v − v) = d. Since u = v, we have b = d. 
☺ 

 

The cartesian product S  T is defined to be: 

{(x, y) | (x  S)  (y  T} 

 

S is a subclass of T if x[x  S → x  T]. 

We denote this by writing S  T. 

So S = T if and only if  S  T and T  S. 
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S is a proper subclass of T if S  T and S  T. 

We write this as S  T. 

 

The power class (S) is defined to be {x | x  S}. 

 

S+ =  {x | (x  S)  (x = S)} called the successor of S. 

In other words S+ = S  {S}. 

 

A set x is called a successor class if it contains the 

successor of each of its elements. 

 

The successor closure of S is the intersection of all the 

successor sets that contain S (as an element). We denote 

it by S*. So S* = {x | (S  x)  y(y  x → y+  x)}. 

 

Example 3 (continued): 

To assist you in understanding all of the above 

constructions let’s see what they are in the model of 

Example 3. Here the set is ℕ and x  y means that x < y2. 

 

 = 0 because there are no natural numbers less than 02. 

3 − 2 is the class {4, 5, 6, 7. 8}. Since this is not one of 

the sets in this model and so it is a proper class. 

{2, 3} is not a set in this model and so it is a proper class. 

There are no unordered pairs in the model of Example 2.  

 

3 = 8 since 3 = 0  1  2 …  8 = 8. 

 

3 = 0 since 3 = 0  1  …  8 = 0 since 0 is empty. 
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2  3 = 3 and 2  3 = 2. 

 

2  3 since 2 = {0, 1, 2, 3} and 3 = {0, 1, 2, …, 8}. 

 

2 = is a proper class 

3 = 2  since the only subsets of 3 are 0, 1, 2, 3 and these 

make up the set 2. 

 

0+ = {0} = 1; 

1+ = 1  {1} = {0}  {1} = {0, 1} which is a proper class; 

2+ = 2  {2} = {0, 1, 2, 3}  {2} = {0, 1, 2, 3} = 2. 

In fact n+ = n for all n  2. 

 One novel feature of this model is that the integers 

from 2 onwards are elements of themselves. The 

phenomenon of x  x is an interesting one. When we 

come to setting up the axioms for set theory we’ll have to 

decide whether to allow this possibility or whether to rule 

it out. Before you reach that point in the notes you might 

like to contemplate whether you would like to allow this 

self-referential behaviour of sets. 

 

§3.6. ZF-Models 
A ZF-model is a model that satisfies the following 

axioms: 

(1) Empty Set:  is a set. 

(2) Pairs: If S, T are sets so is {S, T}. 

(3) Powers: If S is a set so isS. 

(4) Union: If S is a set so is S. 
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(5) Infinity:  = * is a set. 

(6) Specification: If S is a set and P is any predicate built 

up from  then {x  S | Px} is a set. 

(7) Substitution: If S is a set 

and F is any function then 

F[S] = {F(x) | x  S} is a set. 

 We’ll be defining 

functions later as sets of 

ordered pairs. For the purpose 

of Axiom (7) a function is a 

binary predicate Pxy, built up 

from , such that: 

xyz[Pxy  Pxz → y = z]. 

Notice that without the 

Axiom of the Empty Set we’d 

have no sets at all, because all 

the other axioms say, “IF S is 

a set ….”. But this axiom on 

its own only produces one set, . 

By the Axiom of Pairing, if S is any set then so is 

{S, S} = {S}. So with just the first two axioms we can 

produce , {}, {{}}, … and pairs of these, such as 

{{}, {{{}}}}. 

We can produce infinitely many others, such as 

{{}, {, {}}}. But all these have 0, 1 or 2 elements. 

 

If we take just the first three axioms we can 

produce larger sets. For example: 

() = {} with 1 element, 
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2() = {, {}} with 2 elements, 

3 = {, {}, {{}}, {, {}} with 4 elements. 

……………………………………………….. 

But all such sets will have size 2n for some n. 

With the first four axioms we can get sets of any 

finite size. For example: 

{, {}  {, {{}} = {, {}, {{ }}}. 

 But all such sets will be finite. 

We need the Axiom of Infinity to get an infinite set 

and with the Axiom of Specification we can be sure that 

subclasses of sets are indeed subsets. The Axiom of 

Substitution is rather more technical than the others, but 

in essence it says that any class that is in 1-1 

correspondence with a set is a set. 

 

 But reflect again on the fact that in order for the 

Axiom of Specification to work we need to have sets in 

which to operate. And without the Axiom of the Empty 

Set our model would be empty. The Big Bang that creates 

the infinite universe of sets from a void is the axiom that 

assumes the existence of the empty set. 

There’s something rather appropriate about 

mathematics being created out of the empty set. If you 

have a religious bent you can liken it to God creating the 

world out of nothing. If you have a scientific bent you can 

liken the process to the Big Bang, which sort of says the 

same thing, without the religious overtones. 
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 We assume the existence of a ZF-model. This will 

be our universe of sets within which all of mathematics 

can be developed. Whether such a model exists is another 

matter. Of course, things exist in mathematics if we 

choose to say they exist – provided they don’t lead to a 

contradiction. 

 

We could say “let there be a new number, , equal 

to 0/0”. There’s nothing wrong with that I suppose, but 

don’t expect the laws of algebra to continue to work like 

they did when we invented the imaginary number, i. 

For if  = 
0

0
 then  + 1 = 

0

0
  + 

1

1
  = 

0.1 + 0.1

0.1
 = 

0

0
  = , 

Similarly  + 2 =  + 1, so 1 = 2 and you’re the Pope! 

 

So the existence of a ZF model hinges purely on 

whether the ZF axioms are consistent. But they have 

never been proved to be consistent, and probably never 

will be, because to prove consistency we’d have to create 

a model that satisfies them, and we can only do this by 

starting with some sort of model as complex as the ZF 

model itself. All we can do is to prove theorems based on 

these axioms and hope for the best! 

 

 The ZF axioms are really a creed. Virtually all 

mathematicians consciously, or unconsciously, believe in 

this creed, or something equivalent to it. There are a few 

agnostics who deny the axiom of infinity on the grounds 
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that we live in a finite universe.  But they’re the losers. 

Their mathematics is severely impoverished. 

 Just like a religious creed we can’t prove that the 

ZF axioms are true. What would we start with in order to 

do this? 

 So here’s the point where you can give up 

mathematics altogether and go and do gardening or 

something else. If you want to be a serious mathematician 

and want to base your mathematics on a firm foundation, 

I’m sorry, the ZF axioms, or their equivalent, are the best 

we’ve got. 

But, if one day someone comes up with a new 

paradox that shows the ZF axioms to be inconsistent, a 

few mathematicians will undertake the job of modifying 

the fundamental axioms, while the vast majority will 

continue as if nothing has happened! 

Mathematicians have a faith in their mathematical 

intuition as strong as any religious person does with their 

religious conviction. Please never say that you must only 

believe what you can prove! 

In the mean time I’ll now show that certain familiar 

mathematical objects that we are familiar with can be 

considered as sets. 

 

Theorem 7: For all sets S and T, S − T is a set. 

Proof: S − T = {x  S | x  T} is a set by the Axiom of 

Specification. ☺ 
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Theorem 8: S is a set if S  0. 

Proof: Let T  S. 

Then S = {x  T | y[y  S → x  y]} by the Axiom of 

Specification. ☺ 

 

Theorem 9: For all sets S and T, S  T is a set. 

Proof: By the Axiom of Pairs, {S, T} is a set. 

By the Axiom of Unions, {S, T} = S  T is a set. ☺ 

 

Theorem 10: For all sets S, T,  (S, T) is a set. 

Proof: By the Axiom of Pairs {S, T} is a set. By the 

Axiom of Powers {S, T} is a set. 

Now (S, T) = {{S}, {S, T}} 

                   = {x  (S, T} | x = {S}  x = {S, T}} by 

the Axiom of Specification. ☺ 

 

Theorem 11: For all sets S and T, S  T is a set. 

Proof: If x  S and y  T then (x, y)  {x, y} and so 

(x, y)  2{x, y}. 

Now each of x  and y is an element of S  T, which is a 

set by theorem 10. 

So {x, y}  S  T and so (x, y)  2(S  T), which is a 

set by the Axiom of Powers. 

Hence S  T  2(S  T) and so is a set by the Axiom 

of Specification. ☺ 

 We can write out explicitly the property that 

extracts S  T from all the other elements of 3(S  T) 

as follows. 
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S  T = 

{z  2(S  T) | z  S and (z − z)  T}. 

 

To express the condition in terms of primitive 

membership statements is straightforward, but very 

messy. For a start, if y = {x  z | Px} is a set we can express 

y  S by s[s  S  x[x  s  Px]]. 

Now x  z can be written as y[y  z → x  y] and 

x  z can be written as y[x  y  y  z]. 

 

So z  S can be expressed as: 

s[s  S  x[xs  a[xa  az]]], 

that is: 

s[sS  x[xs  a[xa  b[bz → ab]]]]. 

 

And (z − z)  T can be expressed as: 

t[tT  x[xt  a[xa  a  z − z]]]. 

that is: 

t[tT  x[xt  a[xa  b[ab  b z]  

                                                        −b[bz → ab]]]] 

 

 I think you get the idea. Now we don’t want to have 

to crawl at this basic level all the way through our 

development of mathematics. The point is that we could 

do so, if we really had to. 

 

 We can’t get very far with mathematics without 

functions and relations. One of the very first things we 

learnt in arithmetic was 2 + 2 = 4. Before we can justify 
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this rigorously we need not only to define the numbers 2 

and 4, but also addition, which is a function of two 

variables. 

 


